4.6 Article

Redox switching and oxygen evolution electrocatalysis in polymeric iron oxyhydroxide films

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 13, 页码 2203-2217

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b815338h

关键词

-

向作者/读者索取更多资源

Outstanding issues regarding the redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been examined. Charge percolation through the hydrous layer has been quantified, using cyclic voltammetry, in terms of a charge transport diffusion coefficient D(CT) which admits a value of ca. 3 x 10(-10) cm(2) s(-1). Steady-state Tafel plot analysis and electrochemical impedance spectroscopy have been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec (1) and ca. 120 mV dec (1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据