4.6 Article

Quantum-chemistry calculations of hydrogen adsorption in MOF-5

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 40, 页码 9250-9258

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b909021e

关键词

-

资金

  1. Ministerio de Ciencia e Innovacion of Spain [MAT2007-64682]
  2. Distributed European Infrastructure for Supercomputing Applications (DEISA) Consortium

向作者/读者索取更多资源

High concentrations of molecular hydrogen adsorption on MOF-5 were evaluated at the semiempirical PM6 (periodic and cluster) and ab initio MP2 (cluster) theoretical levels. From the semiempirical calculations, an uptake of 3.9% weight on the inorganic building unit of MOF-5 was estimated, in good agreement with a recent accurate estimation of 4.5-5.2%. Although PM6 allows a correct estimation of the maximum uptake, the adsorption energy was overestimated and hence ab initio calculations, including a correlation treatment at the MP2 level as well as corrections for basis set superposition error, were performed with full optimisation, including the 6-31G basis set, which rendered an adsorption energy (per hydrogen molecule) of - 0.14 kcal mol(-1). The crucial role of the quality of the basis set, as well as the importance of simulating high hydrogen loading (resembling experimental measurements), are remarked. Single point calculations (using the 6-31G geometry) with improved basis sets 6-31G(d,p) and 6-31 ++ G(d,p) yielded adsorption energies of - 0.33 and - 0.57 kcal mol(-1), the latter in reasonable agreement with a recent experimental estimation of - 1.0 kcal mol(-1). The role of the intermolecular hydrogen interactions is highlighted in this study, since many previous computational studies were performed at low hydrogen loadings, far from the experimental uptake conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据