4.6 Article

Electrochemical investigation of Mn4O4-cubane water-oxidizing clusters

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 30, 页码 6441-6449

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b901419e

关键词

-

资金

  1. Australian Research Council [LS/GCD/GFS/AMB]
  2. Federation Fellowship Scheme
  3. US National Institutes of Health
  4. Lemberg Fellowship
  5. Australian Academy of Sciences Travel Fellowship
  6. Australian Postgraduate Award
  7. Fullbright Postgraduate Award
  8. Monash University Postgraduate Publication Award

向作者/读者索取更多资源

High valence states in manganese clusters are a key feature of the function of one of the most important catalysts found in nature, the water-oxidizing complex of photosystem II. We describe a detailed electrochemical investigation of two bio-inspired manganese-oxo complexes, [Mn4O4L6] (L = diphenylphosphinate (1) and bis(p-methoxyphenyl)phosphinate (2)), in solution, attached to an electrode surface and suspended within a Nafion film. These complexes contain a cubic [Mn4O4](6+) core stabilized by phosphinate ligands. They have previously been shown to be active and durable photocatalysts for the oxidation of water to dioxygen. A comparison of catalytic photocurrent generated by films deposited by two methods of electrode immobilization reveals that doping of the catalyst in Nafion results in higher photocurrent than was observed for a solid layer of cubane on an electrode surface. In dichloromethane solution, and under conditions of cyclic voltammetry, the one-electron oxidation processes 1/1(+) and 2/2(+) were found to be reversible and quasi-reversible, respectively. Some decomposition of 1(+) and 2(+) was detected on the longer timescale of bulk electrolysis. Both compounds also undergo a two-electron, chemically irreversible reduction in dichloromethane, with a mechanism that is dependent on scan rate and influenced by the presence of a proton donor. When immersed in aqueous electrolyte, the reduction process exhibits a limited level of chemical reversibility. These data provide insights into the catalytic operation of these molecules during photo-assisted electrolysis of water and highlight the importance of the strongly electron-donating ligand environment about the manganese ions in the ability of the cubanes to photocatalyze water oxidation at low overpotentials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据