4.6 Article

Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 14, 页码 2525-2531

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b817902f

关键词

-

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  2. MESA<SUP>+</SUP> Institute for Nanotechnology

向作者/读者索取更多资源

We present experiments to determine the quantum efficiency and emission oscillator strength of exclusively the emitting states of the widely used enhanced green fluorescent protein (EGFP). We positioned the emitters at precisely defined distances from a mirror to control the local density of optical states, resulting in characteristic changes in the fluorescence decay rate that we monitored by fluorescence lifetime microscopy. To the best of our knowledge, this is the first emission lifetime control of a biological emitter. From the oscillation of the observed emission lifetimes as a function of the emitter to mirror distance, we determined the radiative and nonradiative decay rates of the fluorophore. Since only the emitting species contribute to the change in emission lifetimes, the rates determined characterize specifically the quantum efficiency and oscillator strength of the on-states of the emitter, in contrast to other methods that do not differentiate between emitting and dark states. The method reported is especially interesting for photophysically complex systems like fluorescent proteins, where a range of emitting and dark forms has been observed. We have validated the analysis method using Rhodamine 6G dye, obtaining results in very good agreement with the literature. For EGFP we determine the quantum efficiency of the on-states to be 72%. As expected for this complex system, our value is higher than that determined by methods that average over on-and off-states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据