4.6 Article

Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 10, 期 25, 页码 3670-3683

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b803717e

关键词

-

向作者/读者索取更多资源

Voltammetric dealloying of bimetallic platinum-copper (Pt-Cu) alloys has been shown to be an effective strategy to modify the surface electrocatalytic reactivity of Pt bimetallic nanoparticles (S. Koh and P. Strasser, J. Am. Chem. Soc., 2007, 129, 12624). Using cyclic voltammetry and structural XRD studies, we systematically characterize the Pt-Cu precursor compounds as well as the early stages of the selective Cu surface dissolution (dealloying) process for Pt25Cu75, Pt50Cu50, and Pt75Cu25 alloy nanoparticles annealed at both low and high temperature. We also assess the impact of the synthesis conditions on the electrocatalytic reactivity for the oxygen reduction reaction (ORR). To gain atomistic insight into the observed voltammetric profiles, we compare our experimental results with periodic DFT calculations of trends in the thermodynamics of surface Cu dissolution potentials from highly stepped and kinked Pt(854) single crystal surfaces. The modeling suggests a dependence of the electrochemical Cu dissolution potentials on the detailed atomic environment (coordination number, nature of coordinating atoms) of the bimetallic Pt-Cu surfaces. The DFT-predicted shifts in electrochemical Cu dissolution potentials are shown to qualitatively account for the observed voltammetric profiles during Cu dealloying. Our study suggests that metal-specific energetics have to be taken into account to explain the detailed dealloying behavior of bimetallic surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据