4.6 Article

Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocalalyst supports

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 10, 期 10, 页码 1433-1442

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b714924g

关键词

-

向作者/读者索取更多资源

We present a novel and facile synthesis methodology for obtaining graphitic carbon structures from Fe(II) and Co(II) gluconates. The formation of graphitic carbon can be carried Out ill only one step by means of heat treatment of these organic salts at a temperature of 900 degrees C or 1000 degrees C under inert atmosphere. This process consists of the following steps: (a) pyrolysis of the organic gluconate and its transformation to amorphous carbon, (b) conversion of Fe2+ and Co2+ ions to Fe2O3 arid CoO and their subsequent reduction to metallic nanoparticles by the carbon and (c) conversion of a fraction of formed amorphous carbon to graphitic structures by Fe and Co nanoparticles that act as catalysts in the graphitization process. The removal of the amorphous carbon and metallic nanoparticles by means of oxidative treatment (KMnO4 in an acid solution) allows graphitic carbon nanostructures (GCNs) to be selectively recovered. The GCNs thus obtained (i.e. nanocapsules and nanopipes) have a high crystallinity as evidenced by TEM/SAED, XRD and Raman analysis. In addition, we used these GCNs as supports for platinum nanoparticles, which were well dispersed (mean Pt size similar to 2.5-3.2 nm). Most electrocatalysts prepared in this way have a high electrocatalytical surface area, up to 90 m(2) g(-1) Pt, and exhibit high catalytic activities toward methanol electrooxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据