4.3 Article

Ab initio study of magnetoelectricity in composite multiferroics

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssb.200945417

关键词

magnetoelectric effects; multiferroics

资金

  1. Sonder-forschungsbereich [SFB 762]

向作者/读者索取更多资源

The coexistence of magnetism and ferroelectricity in the same crystalline phase of a so-called multiferroic (MF) material involves the opportunity of magnetoelectric (ME) coupling. ME coupling, in principle, offers magnetization switching by an electric field or polarization switching by a magnetic field. Since this phenomenon allows to store information in nanometer-sized memories with four logic states, the issues of MFs are of prime interest. In the single-phase MFs, however, the electric polarization and magnetization interact weakly with each other while ferromagnetism disappears far below room temperature. A more robust scenario of magnetoelectricity might occur in artificial MFs composed of ferromagnetic (FM) thin films which are grown epitaxially on a ferroelectric substrate. In the study of composite MFs, the results of ab initio calculations have shown an extremely promising direction for the next years. Although these calculations go ahead of experiment they explore the trends and basic physics of ME. Here, on the basis of first-principles calculations we predict that epitaxial ultrathin Fe films deposited on TiO2-terminated (001) surface of ATiO(3) perovskites (A = Pb, Ba) exhibit an unexpected change in their magnetic structure with increasing Fe-film thickness. The magnetic order changes from strongly FM for the single-monolayer Fe system to ferrimagnetic with almost vanishing magnetization upon deposition of a second Fe layer. FM order is restored for thicker Fe films. This effect can be understood in terms of hybridization of electronic states and structural relaxation. Additionally, we study the effect of iron oxidation on the ME coupling at the Fe-2/ATiO(3)(001) interface. The oxygen coverage ranged between 0.5 and 2.0 adsorbed O atom per Fe atom. The magnetic properties of the Fe layer are gradually degraded with increasing O coverage. However, the change in magnetization which is induced by the electric polarization reversal remains robust for all energetically favorable compositions. Thus, the surface oxidation of composite MFs cannot destroy the switchable magnetoelectricity. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据