4.4 Article

Development of multichannel quartz crystal microbalances for MIP-based biosensing

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssa.201100715

关键词

biosensor; finite element analysis; molecular imprinting; quartz crystal microbalance

资金

  1. Hasselt University
  2. Life Science Initiative of the Province Limburg

向作者/读者索取更多资源

Molecularly imprinted polymers (MIPs) offer a huge potential in the development of cheap small-scale disposable biomimetic sensors. They are suited for a wide variety of biological targets and are compatible with many different measurement techniques such as gravimetric sensing and impedance spectroscopy. One potential sensor platform for MIP-based biosensors is the quartz crystal microbalance (QCM). A 4-channel MIP/non-imprinted polymer (NIP) coated QCM biosensor array was developed on a single piece of quartz crystal. To study cross-channel frequency coupling of the resonance modes, a simulation of crystal designs using finite element analysis (FEA) modeling was created. Based on these simulations and using reactive ion etching (RIE) to create mesa-like structures on the crystal surface, crosstalk can be severely reduced. The improved functionality compared to the traditional QCMs was demonstrated by employing these mesa-type multichannel QCM (MQCM) crystals as an L-nicotine biosensor platform. (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据