4.6 Article

Macroscopic effects of reaction time on traffic flow characteristics

期刊

PHYSICA SCRIPTA
卷 80, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-8949/80/02/025802

关键词

-

向作者/读者索取更多资源

Reaction time is defined as a physiological parameter reflecting the period of time between perceiving a stimulus and performing a relevant action. In the traffic flow theory literature, the effects of reaction time on string stability have been described using the microscopic modeling approach. This paper presents a distinct approach to investigate how reaction time influences traffic flow stability using a macroscopic model. In the paper, the distinction between string stability and flow stability is defined. The flow stability conditions are derived based on the macroscopic model, which is developed from a gas-kinetic principle. From linear analysis, we find that at macroscopic scale the reaction time influences how instabilities propagate but does not contribute to whether those ( linear) instabilities occur. Nevertheless, nonlinear analysis might give a different view on the impact of reaction time on traffic flow stability, but the effect is nonlinear. We argue that the findings provide a better understanding of the effects of reaction time on traffic flow characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据