4.5 Article

Visible light photocatalysis and electron emission from porous hollow spherical BiVO4 nanostructures synthesized by a novel route

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2013.11.014

关键词

BiVO4; Hollow sphere; Visible light; Photocatalyst; Field emission

资金

  1. University Grants commission, the Govt. of India under the 'University with potential for excellence (UPE II)' scheme

向作者/读者索取更多资源

Hollow spheres of BiVO4, made of pyramid like nanocrystals have been synthesized in an aqueous medium through a precursor solution mediated growth method with appropriate amount of polyvinyl alcohol (PVA). It was found that concentration of PVA in the precursor solution played a crucial role in determining the morphology of the product. Hollow spherical BiVO4 was formed with PVA concentration of 64 mg/mL in the precursor solution while with 32 mg/mL PVA concentration mixed morphology of hollow spherical and cubical structure was formed. Without adding PVA, only cubical (bulk like) BiVO4 powder was obtained. The structures have been characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), Fourier-transformed infrared (FTIR) spectroscopy, UV-Vis spectroscopy, thermogravimetry analysis (TGA) and differential thermal analysis (DTA). As-prepared hollow spherical BiVO4 samples were having monoclinic structure with energy band gap 2.42 eV. The hollow spherical BiVO4 exhibited excellent visible-light-driven photocatalytic efficiency for degrading N,N,N',N'-tetraethylated rhodamine (RhB) organic dye, which was nearly 13 times efficient than that of the samples prepared by the same method but without PVA in the precursor solution. After five recycles, the hollow spherical BiVO4 catalyst did not exhibit any significant loss of photocatalytic activity, confirming the photocatalyst is essentially stable. The BiVO4 hollow spheres also exhibited electron field emission indicating that BiVO4 with tailored morphology can be used as a multi-functional material. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据