4.5 Article

Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field accounting for both surface energy and size effects

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physe.2014.04.009

关键词

Transverse vibration; Current-carrying nanowire; Longitudinal magnetic field; Nonlocal continuum mechanic; Surface elasticity theory

向作者/读者索取更多资源

Forced vibrations of current-carrying nanowires in the presence of a longitudinal magnetic field are of interest. By considering the surface energy and size effects, the coupled equations of motion describing transverse motions of the nanostructure are derived. By employing Galerkin and Newmark-beta approaches, the deflections of the nanowire subjected to transverse dynamic loads are evaluated. The effects of the magnetic field, electric current, pre-tension force, frequency of the applied load, surface and size effects on the maximum transverse displacements are discussed. The obtained results display that for the frequency of the applied load lower than the nanowire's fundamental frequency, by increasing the magnetic held or electric current, the maximum transverse displacements would increase. However, for exciting frequencies greater than that of the nanowire, maximum transverse displacements would increase or decrease with the magnetic field strength or electric current. Additionally, the pre-tension force results in decreasing of the maximum transverse displacements. Such a reduction is more apparent for higher values of the magnetic field strength and electric current. The present study would be useful in the design of the micro- and nanoelectro-mechanical systems expected to be one of the most wanted technologies in the near future. (c) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据