4.5 Article Proceedings Paper

Photo-excited carriers and optical conductance and transmission in graphene in the presence of phonon scattering

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2009.11.048

关键词

Graphene; Optic phonon; Photon-excited carriers; Optical conductance

向作者/读者索取更多资源

We present a theoretical study of the optoelectronic properties of monolayer graphene. Including the effect of the electron-photon-phonon scattering, we employ the mass- and energy-balance equations derived from the Boltzmann equation to evaluate self-consistently the carrier densities, optical conductance and transmission coefficient in graphene in the presence of linearly polarized radiation field. We find that the photo-excited carrier density can be increased under infrared radiation and depend strongly on radiation intensity and frequency. For short wavelengths (lambda <3 mu m), the universal optical conductance sigma(0) = e(2)/4h is obtained and the light transmittance is about 0.97-0.98. Interestingly, there is an optical absorption window in the range 4-100 mu m which is induced by different transition energies required for inter- and intra-band optical absorption. The position and width of this absorption window depend sensitively on temperature and carrier density of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据