4.7 Article

Unique sharp photoluminescence of size-controlled sonochemically synthesized zirconia nanoparticles

期刊

ULTRASONICS SONOCHEMISTRY
卷 23, 期 -, 页码 174-184

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2014.10.004

关键词

Zirconia; Nanophosphors; Photoluminescence; Energy band gap; Kubelka-Munk plot; Rietveld refinement

资金

  1. AICTE, New Delhi, India through National Doctoral Fellowship Scheme

向作者/读者索取更多资源

The present study explores the features of tetragonally stabilized polycrystalline zirconia nanophosphors prepared by a sonochemistry based synthesis from zirconium oxalate precursor complex. The sonochemically prepared pristine zirconia, 3 mol%, 5 mol% and 8 mol% yttrium doped zirconia nanophosphors were characterized using thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The reaction mechanism of formation of zirconia nanophosphors is discussed in detail. The probable sonochemical formation mechanism is being proposed. Stabilization of tetragonal phase of pristine zirconia even at room temperature was effectively established by controlling the particle size using ultrasonic waves. Improved phase purity and good surface morphology of the nanophosphors is being achieved via sonochemical route. FE-SEM micrographs reveal that the nanoparticles have uniform spherical shape and size. The narrow particle size distribution (similar to 15-25 nm) of the zirconia nanoparticles was found from FE-SEM statistical analysis and further confirmed by TEM. Zirconia nanophosphors exhibit a wide energy band gap and which was found to vary with yttrium dopant concentration. The highlight of the present study is the synthesis of novel nanocrystalline ZrO2 and Y-ZrO2 phosphor which simultaneously emits extremely sharp as well as intense UV, violet and cyan light on exciting the host atom. The yttrium ion dopant further enhances the photoluminescence property of zirconia. These nanocrystalline phosphors are likely to have remarkable optical applications as light emitting UV-LEDs, UV lasers and multi color displays. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据