4.6 Article

Grid anisotropy reduction for simulation of growth processes with cellular automaton

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 253, 期 -, 页码 73-84

出版社

ELSEVIER
DOI: 10.1016/j.physd.2013.03.005

关键词

Cellular automaton; Grid anisotropy; Growth; Dendritic growth

资金

  1. [BS/PB-1-103-3010/11/P]

向作者/读者索取更多资源

Growth processes simulated on a regular cellular automaton grid with simple capture rules are considerably influenced by the structure of the grid. Some of the growth directions are favored over others leading to highly anisotropic or, at least, orientation-dependent growth pattern. A new method is proposed for significant reduction of artificial grid anisotropy in 2D and 3D cellular automata with continuous state variable. The method employs additional diffusion process controlling the growth rate and allows for isotropic or anisotropic growth where the anisotropy is decoupled from the grid structure. Verification of the method is provided in the case of isotropic circular growth, isotropic growth of various shapes in uniform and spatially varying fields, and anisotropic growth with respect to orientation and symmetry of the pattern. Finally, the reduction of grid anisotropy is demonstrated in 2D simulation of dendritic grain growth in pure metal. The shape of the grain is shown to be virtually independent of the orientation. An example growth of a grain with six-fold symmetry is also included. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据