4.6 Article

Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 238, 期 21, 页码 2089-2118

出版社

ELSEVIER
DOI: 10.1016/j.physd.2009.08.002

关键词

Approximate inference; Model comparison; Variational Bayes; EM; Laplace approximation; Free-energy; SDE; Nonlinear stochastic dynamical systems; Nonlinear state-space models; DCM; Kalman filter; Rauch smoother

资金

  1. Wellcome trust

向作者/读者索取更多资源

In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据