4.4 Article

Optimizing detector geometry for trace element mapping by X-ray fluorescence

期刊

ULTRAMICROSCOPY
卷 152, 期 -, 页码 44-56

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultramic.2014.12.014

关键词

Trace element detection; X-ray fluorescence; X-ray fluorescence microscopy; Detector geometry; Signal-to-noise ratio

资金

  1. US Department of Energy, Office of Science, Basic Energy Sciences program [DE-AC02-06CH11357]
  2. National Institutes of Health [RO1 GM 104530]

向作者/读者索取更多资源

Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90 degrees to the beam versus a larger detector at 180 degrees (in a backscatter-like geometry), the 90 degrees detector is better for trace element detection in thick samples, while the larger detector in 180 degrees geometry is better suited to trace element detection in thin samples. (C) 2015 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据