4.6 Article

Kinetic theory of long-range interacting systems with angle-action variables and collective effects

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physa.2012.02.019

关键词

Kinetic theory; Landau equation; Lenard-Balescu equation; Fokker-Planck equation; Angle-action variables; Collective effects; Spatially inhomogeneous systems; Long-range interactions

向作者/读者索取更多资源

We develop a kinetic theory of systems with long-range interactions taking collective effects and spatial inhomogeneity into account. Starting from the Klimontovich equation and using a quasilinear approximation, we derive a Lenard-Balescu-type kinetic equation written in angle-action variables. We confirm the result obtained by Heyvaerts [Heyvaerts, Mon. Not. R. Astron. Soc. 407, 355 (2010)] who started from the Liouville equation and used the BBGKY hierarchy truncated at the level of the two-body distribution function (i.e., neglecting three-body correlations). When collective effects are ignored, we recover the Landau-type kinetic equation obtained in our previous papers [P.H. Chavanis. Physica A 377, 469 (2007); J. Stat. Mech., P05019 (2010)]. We also consider the relaxation of a test particle in a bath of field particles. Its stochastic motion is described by a Fokker-Planck equation written in angle-action variables. We determine the diffusion tensor and the friction force by explicitly calculating the first and second order moments of the increment of action of the test particle from its equations of motion, taking collective effects into account. This generalizes the expressions obtained in our previous works. We discuss the scaling with N of the relaxation time for the system as a whole and for a test particle in a bath. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据