4.6 Article

Solvent viscosity dependence for enzymatic reactions

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physa.2008.06.025

关键词

enzyme catalysis; Kramers' theory; thermally activated escape; periodic driving

向作者/读者索取更多资源

it mechanism for relationship of solvent viscosity with reaction rate constant at enzyme action is suggested. it is based on fluctuations of electric field in enzyme active site produced by thermally equilibrium rocking (crankshaft motion) of the rigid plane (in which the dipole moment approximate to 3.6 D lies) of a favourably located and oriented peptide group (or may be a few of them). Thus the rocking of the plane leads to fluctuations of the electric field of the dipole moment. These fluctuations can interact with the reaction coordinate because the latter in its turn has transition dipole moment due to separation of charges at movement of the reacting system along it. The rocking of the plane of the peptide group is sensitive to the microviscosity of its environment in protein interior and the latter is a function of the solvent viscosity. Thus we obtain an additional factor of interrelationship for these characteristics with the reaction rate constant. We argue that due to the properties of the crankshaft motion the frequency spectrum of the electric field fluctuations has a sharp resonance peak at some frequency and the corresponding Fourier mode can be approximated as oscillations. We employ a known result from the theory of thermally activated escape with periodic driving to obtain the reaction rate constant and argue that it yields reliable description of the pre-exponent where the dependence on solvent viscosity manifests itself The suggested mechanism is shown to grasp the main feature of this dependence known from the experiment and satisfactorily yields the upper limit of the fractional index of a power in it. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据