4.4 Article

Flux balance analysis of Chlorella sp FC2 IITG under photoautotrophic and heterotrophic growth conditions

期刊

PHOTOSYNTHESIS RESEARCH
卷 118, 期 1-2, 页码 167-179

出版社

SPRINGER
DOI: 10.1007/s11120-013-9943-x

关键词

Flux balance analysis; Dynamic flux balance analysis; Microalgae; Chlorella sp.; Maintenance energy; Kinetic model

资金

  1. Department of Biotechnology, India [BT/PR484/PBD/26/259/ 2011]

向作者/读者索取更多资源

Quantification of carbon flux distribution in the metabolic network of microalgae remains important to understand the complex interplay between energy metabolism, carbon fixation, and assimilation pathways. This is even more relevant with respect to cyclic metabolism of microalgae under light-dark cycle. In the present study, flux balance analysis (FBA) was carried out for an indigenous isolate Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. A shift in intracellular flux distribution was predicted during transition from nutrient sufficient phase to nutrient starvation phase of growth. Further, dynamic flux analysis (dFBA) was carried out to capture light-dark metabolism over discretized pseudo steady state time intervals. Our key findings include the following: (i) unlike heterotrophic condition, oxidative pentose phosphate (PP) pathway, and Krebs cycle were relatively inactive under photoautotrophic growth; (ii) in both growth conditions, while transhydrogenation reaction was highly active, glyoxalate shunt was found to be nonoperative; (iii) flux distribution during transition period was marked with up regulation of carbon flux toward nongrowth associated (NGA) maintenance energy, oxidative phosphorylation, and photophosphorylation; (iv) redirection of carbon flux from polysaccharide and neutral lipid resulted in up regulation of Krebs cycle flux in the dark phase; (v) elevated glycolytic and acetyl-CoA flux were coupled with induction of neutral lipid during light cycle of the growth; (vi) significantly active photophosphorylation in the light phase was able to satisfy cellular energy requirement without need of oxidative PP pathway; and (vi) unlike static FBA, dFBA predicted an unaltered NGA maintenance energy of 1.5 mmol g(-1) DCW h(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据