4.4 Article

Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants

期刊

PHOTOSYNTHESIS RESEARCH
卷 111, 期 3, 页码 261-268

出版社

SPRINGER
DOI: 10.1007/s11120-012-9720-2

关键词

Cytosolic fructose-1,6-bisphosphatase; Growth enhancement; Source capacity; Triose phosphate/phosphate translocator

资金

  1. (SSAC) Rural Development Administration, Republic of Korea [PJ008114]

向作者/读者索取更多资源

Photoassimilated carbons are converted to sucrose in green plant leaves and distributed to non-phototropic tissues to provide carbon and energy. In photosynthetic sucrose biosynthesis, the chloroplast envelope triose phosphate/phosphate translocator (TPT) and cytosolic fructose-1,6-bisphosphatase (cFBPase) are key components in photosynthetic sucrose biosynthesis. The simultaneous overexpression of TPT and cFBPase was utilized to increase the source capacity of Arabidopsis. The TPT and cFBPase overexpression lines exhibited enhanced growth with larger rosette sizes and increased fresh weights compared with wild-type (WT) plants. The simultaneous overexpression of TPT and cFBPase resulted in enhanced photosynthetic CO2 assimilation rates in moderate and elevated light conditions. During the phototropic period, the soluble sugar (sucrose, glucose, and fructose) levels in the leaves of these transgenic lines were also higher than those of the WT plants. These results suggest that the simultaneous overexpression of TPT and cFBPase enhances source capacity and consequently leads to growth enhancement in transgenic plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据