4.4 Article

D1-arginine257 mutants (R257E, K, and Q) of Chlamydomonas reinhardtii have a lowered QB redox potential: analysis of thermoluminescence and fluorescence measurements

期刊

PHOTOSYNTHESIS RESEARCH
卷 98, 期 1-3, 页码 449-468

出版社

SPRINGER
DOI: 10.1007/s11120-008-9351-9

关键词

D1-R257 mutants; Bicarbonate in Photosystem II; Thermoluminescence; Theory of thermoluminescence; Chlorophyll a fluorescence yield decay; Electron acceptor side of Photosystem II; Redox potentials of Q(A)(-)/Q(A) and Q(B)(-)/Q(B); Chlamydomonas reinhardtii; Two-electron gate in Photosystem II; Benzoquinone

资金

  1. Department of Plant Biology, University of Illinois at Urbana-Champaign
  2. NIH [GM35438]
  3. MEXT [18GS0318]
  4. Cooperative State Research, Education and Extension Service, U. S. Department of Agriculture [ILLU-875-389]
  5. Grants-in-Aid for Scientific Research [18GS0318] Funding Source: KAKEN

向作者/读者索取更多资源

Arginine257 (R257), in the de-helix that caps the Q(B) site of the D1 protein, has been shown by mutational studies to play a key role in the sensitivity of Photosystem II (PS II) to bicarbonate-reversible binding of the formate anion. In this article, the role of this residue has been further investigated through D1 mutations (R257E, R257Q, and R257K) in Chlamydomonas reinhardtii. We have investigated the activity of the Q(B) site by studying differences from wild type on the steady-state turnover of PS II, as assayed through chlorophyll (Chl) a fluorescence yield decay after flash excitation. The effects of p-benzoquinone (BQ, which oxidizes reduced Q(B), Q(B)(-)) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, which blocks electron flow from Q(A)(-) to Q(B)) were measured. The equilibrium constants of the two-electron gate were obtained through thermoluminescence measurements. The thermoluminescence properties were changed in the mutants, especially when observed after pretreatment with 100 mu M BQ. A theoretical analysis of the thermoluminescence data, based mainly on the recombination pathways model of Rappaport et al. (2005), led to the conclusion that the free-energy difference for the recombination of Q(B)(-) with S-2 was reduced by 20-40 mV in the three mutants (D1-R257K, D1-R257Q, and D1-R257E); this was interpreted to be due to a lowering of the redox potential of Q(B)/Q(B)(-). Further, since the recombination of Q(A)(-) with S-2 was unaffected, we suggest that no significant change in redox potential of Q(A)/Q(A)(-) occurred in these three mutants. The maximum variable Chl a fluorescence yield is lowered in the mutants, in the order R257K > R257Q > R257E, compared to wild type. Our analysis of the binary oscillations in Chl a fluorescence following pretreatment of cells with BQ showed that turnover of the Q(B) site was relatively unaffected in the three mutants. The mutant D1-R257E had the lowest growth rate and steady-state activity and showed the weakest binary oscillations. We conclude that the size and the charge of the amino acid at the position D1-257 play a role in PS II function by modulating the effective redox potential of the Q(B)/Q(B)(-) pair. We discuss an indirect mechanism mediated through electrostatic and/or surface charge effects and the possibility of more pleiotropic effects arising from decreased stability of the D1/D2 and D1/CP47 interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据