4.3 Article

Acquisition, Orthorectification, and Object-based Classification of Unmanned Aerial Vehicle (UAV) Imagery for Rangeland Monitoring

期刊

出版社

AMER SOC PHOTOGRAMMETRY
DOI: 10.14358/PERS.76.6.661

关键词

-

资金

  1. Bureau of Land Management
  2. USDA Agricultural Research Service (ARS)
  3. USDA Natural Resources Conservation Service

向作者/读者索取更多资源

The use of unmanned aerial vehicles (UAVs) for natural resource applications has increased considerably in recent years due to their greater availability, the miniaturization of sensors, and the ability to deploy a UAV relatively quickly and repeatedly at low altitudes. We examine in this paper the potential of using a small UAV for rangeland inventory, assessment and monitoring. Imagery with a ground resolved distance of 8 cm was acquired over a 290 ha site in southwestern Idaho. We developed a semi-automated orthorectification procedure suitable for handling large numbers of small-footprint UAV images. The geometric accuracy of the orthorectified image mosaics ranged from 1.5 m to 2 m. We used object-based hierarchical image analysis to classify imagery of plots measured concurrently on the ground using standard rangeland monitoring procedures. Correlations between image- and ground-based estimates of percent cover resulted in r-squared values ranging from 0.86 to 0.98. Time estimates indicated a greater efficiency for the image-based method compared to ground measurements. The overall classification accuracies for the two image mosaics were 83 percent and 88 percent. Even under the current limitations of operating a UAV in the National Airspace, the results of this study show that UAVs can be used successfully to obtain imagery for rangeland monitoring, and that the remote sensing approach can either complement or replace some ground-based measurements. We discuss details of the UAV mission, image processing and analysis, and accuracy assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据