4.4 Article

The Different Behavior of Rutile and Anatase Nanoparticles in Forming Oxy Radicals Upon Illumination with Visible Light: An EPR Study

期刊

PHOTOCHEMISTRY AND PHOTOBIOLOGY
卷 88, 期 1, 页码 14-20

出版社

WILEY
DOI: 10.1111/j.1751-1097.2011.01015.x

关键词

-

向作者/读者索取更多资源

Photoexcited TiO2 has been found to generate reactive oxygen species, yet the precise mechanism and chemical nature of the generated oxy species especially regarding the different crystal phases remain to be elucidated. Visible light-induced reactions of a suspension of titanium dioxide (TiO2) in water were investigated using electron paramagnetic resonance (EPR) coupled with the spin-trapping technique. Increased levels of both hydroxyl (?OH) and superoxide anion (?O2-) radicals were detected in TiO2 rutile and anatase nanoparticles (50 nm). The intensity of signals assigned to the ?OH and ?O2- radicals was larger for the anatase phase than that originating from rutile. Moreover, illumination with visible (nonUV) light enhanced ?O2- formation in the rutile phase. Singlet oxygen was not detected in water suspension of TiO2 neither in rutile nor in anatase nanoparticles, but irradiation of the rutile phase with visible light revealed a signal, which could be attributed to singlet oxygen formation. The blue part of visible spectrum (400500 nm) was found to be responsible for the light-induced ROS in TiO2 nanoparticles. The characterization of the mechanism of visible light-induced oxy radicals formation by TiO2 nanoparticles could contribute to its use as a sterilization agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据