4.4 Article

Structural effects on the pH-dependent fluorescence of naphthalenic derivatives and consequences for sensing/switching

期刊

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
卷 11, 期 11, 页码 1675-1681

出版社

SPRINGERNATURE
DOI: 10.1039/c2pp25069a

关键词

-

资金

  1. Engineering and Physical Sciences Research Council, UK
  2. Department of Employment and Learning, Northern Ireland

向作者/读者索取更多资源

Naphthalenic compounds are a rich resource for designers of fluorescent sensing/switching/logic systems. The degree of internal charge transfer (ICT) character in the fluorophore excited states can vary from negligible to substantial. Naphthalene-1,8;4,5-diimides (11-13), 1,8-naphthalimides (16) and 4-chloro-1,8-naphthalimides (15) are of the former type. The latter type is represented by the 4-alkylamino-1,8-naphthalimides (1). Whether ICT-based or not, these serve as the fluorophore in 'fluorophore-spacer-receptor' switching systems where PET holds sway until the receptor is bound to H+. On the other hand, 4-dialkylamino-1,8-naphthalimides (3-4) show modest H+-induced fluorescence switching unless the 4-dialkylamino group is a part of a small ring (5). Electrostatic destabilization of a non-emissive twisted internal charge transfer (ICT) excited state is the origin of this behaviour. An evolution to the non-emissive twisted ICT excited state is responsible for the weak emission of the model compound 6 (and related structures 7 and 8) across the pH range. Twisted ICT excited states are also implicated in the switch 9 and its model compound 10, which are based on the 6-dialkylamino-3H-benzimidazo[2,1-a]benz[d,e]isoquinolin-3-one fluorophore.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据