4.4 Article

Multiparameter fluorescence image spectroscopy to study molecular interactions

期刊

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
卷 8, 期 4, 页码 470-480

出版社

SPRINGERNATURE
DOI: 10.1039/b903245m

关键词

-

资金

  1. German Science Foundation [SFB590]

向作者/读者索取更多资源

Multiparameter Fluorescence Image Spectroscopy (MFIS) is used to monitor simultaneously a variety of fluorescence parameters in confocal fluorescence microscopy. As the photons are registered one by one, MFIS allows for fully parallel recording of Fluorescence Correlation/Cross Correlation Spectroscopy (FCS/FCCS), fluorescence lifetime and pixel/image information over time periods of hours with picosecond accuracy. The analysis of the pixel fluorescence information in higher-dimensional histograms maximizes the selectivity of fluorescence microscopic methods. Moreover it facilitates a statistically-relevant data analysis of the pixel information which makes an efficient detection of heterogeneities possible. The reliability of MFIS has been demonstrated for molecular interaction studies in different complex environments: (I) detecting the heterogeneity of diffusion properties of the dye Rhodamine 110 in a sepharose bead, (II) Forster Resonance Energy Transfer (FRET) studies in mammalian HEK293 cells, and (III) FRET study of the homodimerisation of the transcription factor BIM1 in plant cells. The multidimensional analysis of correlated changes of several parameters measured by FRET, FCS, fluorescence lifetime and anisotropy increases the robustness of the analysis significantly. The economic use of photon information allows one to keep the expression levels of fluorescent protein-fusion proteins as low as possible (down to the single-molecule

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据