4.6 Article

Coupled electron transfers in artificial photosynthesis

出版社

ROYAL SOC
DOI: 10.1098/rstb.2007.2225

关键词

artificial photosynthesis; proton-coupled electron transfer; photosystem II; manganese; tyrosine

类别

向作者/读者索取更多资源

Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据