4.5 Review

Waves in strongly nonlinear discrete systems

出版社

ROYAL SOC
DOI: 10.1098/rsta.2017.0130

关键词

discrete systems; strongly nonlinear; solitons; shock waves; sonic vacuum

资金

  1. Russian Foundation for Fundamental Studies [93-02-14880]
  2. U.S. NSF [DCMS03013220]

向作者/读者索取更多资源

The paper presents the main steps in the development of the strongly nonlinear wave dynamics of discrete systems. The initial motivation was prompted by the challenges in the design of barriers to mitigate high-amplitude compression pulses caused by impact or explosion. But this area poses a fundamental mathematical and physical problem and should be considered as a natural step in developing strongly nonlinear wave dynamics. Strong nonlinearity results in a highly tunable behaviour and allows design of systems with properties ranging from a weakly nonlinear regime, similar to the classical case of the Fermi-Pasta-Ulam lattice, or to a non-classical case of sonic vacuum. Strongly nonlinear systems support periodic waves and one of the fascinating results was a discovery of a strongly nonlinear solitary wave in sonic vacuum (a limiting case of a periodic wave) with properties very different from the Korteweg de Vries solitary wave. Shock-like oscillating and monotonous stationary stress waves can also be supported if the system is dissipative. The paper discusses the main theoretical and experimental results, focusing on travelling waves and possible future developments in the area of strongly nonlinear metamaterials. This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据