4.5 Article

Future trends in aberration-corrected electron microscopy

出版社

ROYAL SOC
DOI: 10.1098/rsta.2009.0062

关键词

aberration correction; achromatic aplanat; coma-free lens; phase shifter

向作者/读者索取更多资源

The attainable specimen resolution is determined by the instrumental resolution limit d(i) and by radiation damage. Solid objects such as metals are primarily damaged by atom displacement resulting from knock-on collisions of the incident electrons with the atomic nuclei. The instrumental resolution improves appreciably by means of aberration correction. To achieve atomic resolution at voltages below approximately 100 kV and a large number of equally resolved image points, we propose an achromatic electron optical aplanat, which is free of chromatic aberration, spherical aberration and total off-axial coma. Its anisotropic component is eliminated either by a dual objective lens consisting of two separate windings with opposite directions of their currents or by skew octopoles employed in the TEAM corrector. We obtain optimum imaging conditions by operating the aberration-corrected electron microscope at voltages below the knock-on threshold for atom displacement and by shifting the phase of the non-scattered wave by pi/2 or that of the scattered wave by -pi/2. In this negative contrast mode, the phase contrast and the scattering contrast add up with the same sign. The realization of a low-voltage aberration-corrected phase transmission electron microscope for the visualization of radiation-sensitive objects is the aim of the proposed SALVE (Sub-angstrom Low-Voltage Electron microscope) project. This microscope will employ a coma-free objective lens, an obstruction-free phase plate and a novel corrector compensating for the spherical and chromatic aberrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据