4.5 Article

Dynamics of globally delay-coupled neurons displaying subthreshold oscillations

出版社

ROYAL SOC
DOI: 10.1098/rsta.2009.0096

关键词

neuron models; synchronization; time delay; global coupling; subthreshold oscillations

资金

  1. 'Ramon y Cajal' programme (Spain)
  2. Ministerio de Ciencia e Innovacion (Spain) [FIS2006-11452]
  3. GABA [FP6-NEST 043309]

向作者/读者索取更多资源

We study an ensemble of neurons that are coupled through their time-delayed collective mean field. The individual neuron is modelled using a Hodgkin-Huxley-type conductance model with parameters chosen such that the uncoupled neuron displays autonomous subthreshold oscillations of the membrane potential. We find that the ensemble generates a rich variety of oscillatory activities that are mainly controlled by two time scales: the natural period of oscillation at the single neuron level and the delay time of the global coupling. When the neuronal oscillations are synchronized, they can be either in-phase or out-of-phase. The phase-shifted activity is interpreted as the result of a phase-flip bifurcation, also occurring in a set of globally delay-coupled limit cycle oscillators. At the bifurcation point, there is a transition from in-phase to out-of-phase (or vice versa) synchronized oscillations, which is accompanied by an abrupt change in the common oscillation frequency. This phase-flip bifurcation was recently investigated in two mutually delay-coupled oscillators and can play a role in the mechanisms by which the neurons switch among different. ring patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据