4.3 Article

Dominant factors influencing the nanoindentation response of piezoelectric materials: a case study in relaxor ferroelectrics

期刊

PHILOSOPHICAL MAGAZINE LETTERS
卷 93, 期 2, 页码 116-128

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09500839.2012.752881

关键词

nanoindentation; dielectric materials; piezoelectrics

向作者/读者索取更多资源

The nanoindentation response of a piezoelectric material is, in general, influenced in a complex manner by its elastic, dielectric and piezoelectric properties. The present study is focused on obtaining a comprehensive understanding of the dominant material factors influencing the forcedepth mechanical indentation response and the chargedepth electrical indentation response of piezoelectric materials. From a large number of three-dimensional finite element simulations of the indentation of simple and complex piezoelectric materials (such as PZT-5A and relaxor ferroelectrics), the following principal conclusions are obtained: (1) For indentations with both conducting and insulating indenters, the mechanical indentation stiffness is influenced more by the elastic properties, while the electrical indentation stiffness is influenced largely by the piezoelectric properties of the indented materials. (2) For longitudinal indentations using a conducting indenter, the elastic constants, C 33 and C 13, and piezoelectric constants, e33 and e15, are, respectively, the first and second most dominant material constants that influence the mechanical indentation stiffness and the electrical indentation stiffness. (3) For transverse indentations using a conducting indenter, the elastic constants, C 11 and C 12, are, respectively, the first and second most dominant material constants that influence the mechanical indentation stiffness. (4) In the indentation of relaxor ferroelectrics based on PMN-xPT and PZN-xPT, which exhibit a range of elastic, dielectric and piezoelectric properties, it is generally observed that materials with higher normal elastic and piezoelectric constants, i.e., C 33 and e33, respectively, exhibit higher mechanical and electrical indentation stiffnesses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据