4.3 Article

Precipitate strengthening in nanostructured metallic material composites

期刊

PHILOSOPHICAL MAGAZINE LETTERS
卷 92, 期 11, 页码 597-607

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09500839.2012.704153

关键词

dislocations; precipitation; nanocomposites

资金

  1. U.S. Department of Energy, Office of Basic Energy Science [DE-FG02-07ER46435]
  2. U.S. Department of Energy (DOE) [DE-FG02-07ER46435] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Nanostructured metallic material (NMM) composites are a new class of materials that exhibit high structural stability, mechanical strength, high ductility, toughness and resistance to fracture and fatigue; these properties suggest that these materials can play a leading role in the future micromechanical devices. However, before those materials are put into service in any significant applications, many important fundamental issues remain to be understood. Among them, is the question of the strengthening of NMM using second phase particles and if the addition of precipitates will strengthen the structures in the same manner as in bulk crystalline solids. This issue is addressed in this work by performing molecular dynamics simulations on NMM with precipitates of various sizes and comparing the results with the same structure without precipitates. In this view, Cu/Nb bilayer thin films with spherical Nb particles inside the Cu layer were examined using molecular dynamics simulations and show a significant improvement on their mechanical behavior, compared to similar structures without particles. Furthermore, an analytical model is developed that explains the strengthening behavior of an NMM that has precipitates inside one layer. The theoretical results show a qualitative agreement with the finding of the atomistic simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据