4.5 Article

Formulation and Characterization of Polyester/Polycarbonate Nanoparticles for Delivery of a Novel Microtubule Destabilizing Agent

期刊

PHARMACEUTICAL RESEARCH
卷 29, 期 11, 页码 3064-3074

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-012-0881-7

关键词

LY293; melanoma; polymeric nanoparticles; tubulin polymerization

资金

  1. R01 [CA148706]
  2. Department of Defense [W81XWH-10-1-0969]
  3. Kosten Foundation

向作者/读者索取更多资源

Since our newly synthesized potent 5-indolyl derivative, (2-(1 H-Indol-5-yl) thiazol-4-yl) 3, 4, 5-trimethoxyphenyl methanone (LY293), to treat resistant melanoma was hydrophobic, our objective was to synthesize a biodegradable copolymer for formulating this drug into nanoparticles and to determine its anticancer activity and mechanism of action. Methoxy poly (ethylene glycol)-b-poly (carbonate-co-lactide) [mPEG-b-P (CB-co-LA)] was synthesized for formulating LY293 into nanoparticles by o/w emulsification and stabilization by solvent evaporation. Particle size, drug release profile, in vitro efficacy in multiple melanoma cells, and mechanism of action of drug-loaded nanoparticles were determined. LY293-loaded nanoparticles with 170 nm mean size and 2.2 and 4.16% drug loading efficiently inhibited proliferation of A375 and B16F10 cells with IC50 of 12.5 nM and 25 nM, respectively. LY293 circumvented multidrug resistance and inhibited proliferation of Pgp overexpressing MDA-MB435/LCC6 MDR1 melanoma cells. Upon treatment with LY293-loaded nanoparticles, A375 cells underwent cell cycle arrest in G2/M phase and apoptotic cell death. Immunofluorescence images showed inhibition of tubulin polymerization after treatment with LY293. LY293-loaded mPEG-b-P (CB-co-LA) nanoparticles showed excellent efficacy and induced apoptosis in melanoma cells. These polyester/polycarbonate-based nanoparticles provided an excellent platform to deliver different poorly soluble drugs to melanoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据