4.5 Article

Time-Correlated Single Photon Counting For Simultaneous Monitoring Of Zinc Oxide Nanoparticles And NAD(P)H In Intact And Barrier-Disrupted Volunteer Skin

期刊

PHARMACEUTICAL RESEARCH
卷 28, 期 11, 页码 2920-2930

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-011-0515-5

关键词

human skin; metabolism; multiphoton microscopy; sunscreen; zinc oxide nanoparticle

资金

  1. National Health and Medical Research Council of Australia [569694]
  2. United States Air Force Asian Office of Aerospace Research and Development

向作者/读者索取更多资源

There is a lack of relevant, non-animal alternatives for assessing exposure and toxicity of nanoparticle-containing cosmetics, e.g. sunscreens. Our goal was to evaluate timecorrelated single photon counting (TCSPC) for simultaneous monitoring of zinc oxide nanoparticles (ZnO-NP) and the metabolic state of volunteer skin. We separated the fluorescence lifetime signatures of endogenous fluorophore signals (i.e. nicotinamide adenine dinucleotide phosphate, NAD(P)H and keratin) and the ZnO-NP signal using advanced TCSPC to simultaneously determine ZnO-NP penetration profiles and NAD(P)H changes in subjects with altered barrier function, including tape-stripped skin and in psoriasis or atopic dermatitis lesions. We detected no ZnO-NP penetration into viable human skin in any group. ZnO-NP signal was significantly increased (p < 0.01) on the surface of tape-stripped and lesional skin after 4 and 2 h of treatment, respectively. Free NAD(P)H signal significantly increased in tape-stripped viable epidermis treated for 4 h of ZnO-NP compared to vehicle control. No significant NAD(P)H changes were noted in the lesional study. TCSPC techniques enabled simultaneous, real-time quantification of ZnO-NP concentration and NAD(P)H via non-invasive imaging in the stratum corneum and viable epidermis of volunteers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据