4.5 Article

Evaluation of Enhanced Condensational Growth (ECG) for Controlled Respiratory Drug Delivery in a Mouth-Throat and Upper Tracheobronchial Model

期刊

PHARMACEUTICAL RESEARCH
卷 27, 期 9, 页码 1800-1811

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-010-0165-z

关键词

computational fluid dynamics; condensational growth; in vitro aerosol deposition; nano-aerosol drug delivery; respiratory drug delivery

资金

  1. National Heart, Lung, And Blood Institute [R21HL094991]

向作者/读者索取更多资源

Purpose The objective of this study is to evaluate the effects of enhanced condensational growth (ECG), as a novel inhalation drug delivery method, on nano-aerosol deposition in a mouth-throat (MT) and upper tracheobronchial (TB) model using in vitro experiments and computational fluid dynamics (CFD) simulations. Methods Separate streams of nebulized nano-aerosols and saturated humidified air (39 degrees C-ECG; 25 degrees C-control) were combined as they were introduced into a realistic MT-TB geometry. Aerosol deposition was determined in the MT, generations G0-G2 (trachea-lobar bronchi) and G3-G5 and compared to CFD simulations. Results Using ECG conditions, deposition of 560 and 900 nm aerosols was low in the MT region of the MT-TB model. Aerosol drug deposition in the G0-G2 and G3-G5 regions increased due to enhanced condensational growth compared to control. CFD-predicted depositions were generally in good agreement with the experimental values. Conclusions The ECG platform appears to offer an effective method of delivering nano-aerosols through the extrathoracic region, with minimal deposition, to the tracheobronchial airways and beyond. Aerosol deposition is then facilitated as enhanced condensational growth increases particle size. Future studies will investigate the effects of physio-chemical drug properties and realistic inhalation profiles on ECG growth characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据