4.5 Article

Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro

期刊

PHARMACEUTICAL RESEARCH
卷 26, 期 11, 页码 2513-2522

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-009-9967-2

关键词

infection; microneedle arrays; microorganisms; stratum corneum

资金

  1. BBSRC [BB/E020534/1]
  2. Science Foundation Ireland Tyndall National Access Programme project [NAP 156]
  3. Biotechnology and Biological Sciences Research Council [BB/E020534/1] Funding Source: researchfish
  4. Public Health Agency [CDV/3650/07] Funding Source: researchfish
  5. BBSRC [BB/E020534/1] Funding Source: UKRI

向作者/读者索取更多资源

In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models. When employing SilescolA (R) membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing SilescolA (R) membranes in the corresponding experiments. Approximately 10(3) cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case. We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle-punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据