4.4 Review

The role of two-pore-domain background K+ (K2P) channels in the thalamus

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-014-1632-x

关键词

TASK channels; TREK channels; Muscarinic modulation; Thalamic firing modes; Thalamocortical network

资金

  1. DFG [FOR 1086, TP2]

向作者/读者索取更多资源

The thalamocortical system is characterized by two fundamentally different activity states, namely synchronized burst firing and tonic action potential generation, which mainly occur during the behavioral states of sleep and wakefulness, respectively. The switch between the two firing modes is crucially governed by the bidirectional modulation of members of the K-2P channel family, namely tandem of P domains in a weakly inward rectifying K+ (TWIK)-related acid-sensitive K+ (TASK) and TWIK-related K+ (TREK) channels, in thalamocortical relay (TC) neurons. Several physicochemical stimuli including neurotransmitters, protons, di- and multivalent cations as well as clinically used drugs have been shown to modulate K-2P channels in these cells. With respect to modulation of these channels by G-protein-coupled receptors, PLC beta plays a unique role with both substrate breakdown and product synthesis exerting important functions. While the degradation of PIP2 leads to the closure of TREK channels, the production of DAG induces the inhibition of TASK channels. Therefore, TASK and TREK channels were found to be central elements in the control of thalamic activity modes. Since research has yet focused on identifying the muscarinic pathway underling the modulation of TASK and TREK channels in TC neurons, future studies should address other thalamic cell types and members of the K-2P channel family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据