4.5 Article

Experimental Investigation of Miscible CO2 Flooding

期刊

PETROLEUM SCIENCE AND TECHNOLOGY
卷 29, 期 19, 页码 2005-2016

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10916461003662976

关键词

CO2; continuous gas flooding; gas flooding miscible flooding; WAG flooding

向作者/读者索取更多资源

Management of water alternating gas (WAG) injection projects requires making decisions regarding the WAG ratio, half-cycle-slug size, and ultimate solvent slug size. The impact of these decisions affects the capital cost and ultimate incremental oil recovery. Core flooding runs were conducted on 2 and 4 ft core samples. Injection scheme (continuous gas injection [CGI] vs. WAG), WAG ratio, and slug size were investigated. In addition, miscible WAG flooding as a secondary process was investigated and its efficiency was compared to the conventional tertiary miscible gas flooding. Miscible gas flooding at different miscible WAG parameters (WAG ratio and slug size) indicate that 1:2 WAG ratio at 0.2 PV slug size is the best combination yielding the highest recovery and tertiary recovery factors. Miscible WAG flooding as a secondary process indicated a higher ultimate recovery compared to the conventional tertiary WAG flooding. However, a larger amount of gas injection is consumed particularly in the early stages of the injection process. Miscible CGI mode conducted using n-Decane as oleic phase appears to have better performance than miscible WAG injection in term of recovery. When light Arab crude oil was used as oleic phase, higher recovery was obtained for miscible WAG flooding. The reversal trend seen in is believed to be due to the presence of crude oil, which alters the rock wettability toward an oil-wet condition, preventing the water blockage during the WAG process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据