4.7 Article

The linker length of glucose-fipronil conjugates has a major effect on the rate of bioactivation by β-glucosidase

期刊

PEST MANAGEMENT SCIENCE
卷 75, 期 3, 页码 708-717

出版社

WILEY
DOI: 10.1002/ps.5170

关键词

glucose conjugate; beta-glucosidase; substrate docking; hydrolysis rate

资金

  1. National Natural Science Foundation of China [31672044]
  2. Natural Science Foundation of Guangdong Province [2014A030311044]
  3. Science and Technology Program of Guangzhou [201510010299]

向作者/读者索取更多资源

BACKGROUND Endogenous plant beta-glucosidases can be utilized to hydrolyze pro-pesticides and release the bioactive pesticide. Two related glucose-fipronil conjugates with different linkers structure, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazol-5-yl}-1-(2-triazolethyl-beta-d-glucopyranoside)-1H-1,2,3-triazole-4-methanamine (GOTF) and N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl)-sulfinyl]-1H-pyrazol-5-yl}-2-aminoethyl-beta-d-glucopyranoside (GOF), were deglucolysated by beta-glucosidase both in vitro and in vivo at different rates. Here, the basis for these differences was investigated by revealing the kinetics of the reaction and by modeling molecular docking between enzyme and substrate. RESULTS Results from kinetic study showed that the reaction rate was the main reason for the poorer rate of GOF hydrolysis with respect to GOTF. Modeling of substrate docking indicated that the spacer arm of glucose-fipronil conjugates affects the strength of non-covalent bonds within the active site and the position of fipronil within the pocket. Four glucose-fipronil conjugates and four corresponding aglycones were synthesized, and the hydrolysis data confirmed that the increased tether length between the bulky aglycone and glycone would lead to faster hydrolysis rate. The bioassay results indicated that most glucose-fipronil conjugates displayed moderate to excellent insecticidal activities in vivo against Plutella xylostella larvae. CONCLUSION This study provides a potential strategy to optimize the substrate structure to enhance hydrolytic specificity in order to design appropriate phloem mobile pro-pesticides. (c) 2018 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据