4.7 Article Proceedings Paper

New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate

期刊

PEST MANAGEMENT SCIENCE
卷 64, 期 4, 页码 332-339

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.1486

关键词

glyphosate; crop; weed; ALS; sulfonylurea; imidazolinone; resistance; tolerance; homogeneous blends

向作者/读者索取更多资源

Glyphosate has performed long and well, but now some weed communities are shifting to populations that survive glyphosate, and growers need new weed management technologies to augment glyphosate performance in glyphosate-resistant crops. Unfortunately, most companies are not developing any new selective herbicides with new modes of action to fill this need. Fortunately, companies are developing new herbicide-resistant crop technologies to combine with glyphosate resistance and expand the utility of existing herbicides. One of the first multiple-herbicide-resistant crops will have a molecular stack of a new metabolically based glyphosate resistance mechanism with an active-site-based resistance to a broad spectrum of ALS-inhibiting herbicides. Additionally, new formulation technology called homogeneous blends will be used in conjunction with glyphosate and ALS-resistant crops. This formulation technology satisfies governmental regulations, so that new herbicide mixture offerings with diverse modes of action can be commercialized more rapidly and less expensively. Together, homogeneous blends and multiple-herbicide-resistant crops can offer growers a wider choice of herbicide mixtures at rates and ratios to augment glyphosate and satisfy changing weed management needs. (c) 2007 Society of Chemical Industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据