4.4 Article

The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens

期刊

PEPTIDES
卷 31, 期 5, 页码 777-785

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2010.02.001

关键词

Plant specific domain; SAPLIPs; Antimicrobial proteins

资金

  1. National Scientific and Technical Research Council (CONICET)
  2. Scientific Research Commission of the Province of Buenos Aires (CIC)
  3. University of Mar del Plata

向作者/读者索取更多资源

Plant-specific insert domain (PSI) is a region of approximately 100 amino acid residues present in most plant aspartic protease (AP) precursors. PSI is not a true saposin domain; it is the exchange of the N- and C-terminal portions of the saposin like domain. Hence, PSI is called a swaposin domain. Here, we report the cloned, heterologous expression and purification of PSI from StAsp 1 (Solarium tuberosum aspartic protease 1), called StAsp-PSI. Results obtained here show that StAsp-PSI is able to kill spores of two potato pathogens in a dose-dependent manner without any deleterious effect on plant cells. As reported for StAPs (S. tube rosum aspartic proteases), the StAsp-PSI ability to kill microbial pathogens is dependent on the direct interaction of the protein with the microbial cell wall/or membrane, leading to increased permeability and lysis. Additionally, we demonstrated that, like proteins of the SAPLIP family, StAsp-PSI and StAPs are cytotoxic to Gram-negative and Gram-positive bacteria in a dose dependent manner. The amino acid residues conserved in SP_B (pulmonary surfactant protein B) and StAsp-PSI could explain the cytotoxic activity exerted by StAsp-PSI and StAPs against Gram-positive bacteria. These results and data previously reported suggest that the presence of the PSI domain in mature StAPs could be related to their antimicrobial activity. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据