4.2 Article Proceedings Paper

The spatio-temporal patterning of Hoxa9 and Hoxa13 in the developing zebrafish enteric nervous system

期刊

PEDIATRIC SURGERY INTERNATIONAL
卷 28, 期 2, 页码 115-121

出版社

SPRINGER
DOI: 10.1007/s00383-011-2992-3

关键词

Zebrafish; Enteric nervous system; Hoxa9; Hoxa13

向作者/读者索取更多资源

Background Hirschsprung's disease is characterised by the absence of ganglion cells in the distal bowel, a process which is controlled by complex genetic pathways. Homeobox genes have a major role in gut development and this is depicted by the enteric Hox code which describes the different spatial and temporal expression of Hox genes. Hoxa9 and Hoxa13 mutations have been discovered in patients with Hirschsprung's disease (HD). The aim of this study was to determine the spatio-temporal pattern of Hoxa9 and Hoxa13 in enteric nervous system (ENS) development using the zebrafish model. Methods Purified plasmids that contained the gene of interest were obtained and inoculated into culture medium to exponentially increase the number of bacteria containing the plasmid. Cells were then harvested by centrifugation and plasmid DNA was extracted, which was then linearised and precipitated. RNA digoxigenin-labelled probes were made by in vitro transcription reaction. In situ hybridisation was carried out using these probes on zebrafish embryos which were collected from 24 to 120 h post fertilisation (hpf), by which time the zebrafish intestine is fully developed. Embryos were then mounted in glycerol and imaged using an Olympus B40 microscope and images were taken using an Olympus Super F1.8 digital camera. Results At 24 hpf, Hoxa9 expression is seen in the forebrain and hindbrain and also in the very distal myotome whereas Hoxa13 expression, however, is seen only at the forebrain and hindbrain. At 48 hpf, Hoxa9- and Hoxa13-labelled cells are seen migrating distally from the forebrain into the notochord and spinal cord. At 72 hpf, Hoxa9-labelled cells can be seen throughout the spinal cord whereas Hoxa13 positive cells are seen migrating down from the spinal cord and in the proximal gut. By 96 hpf, Hoxa9-and Hoxa13-labelled cells have migrated down the full length of the spinal cord and along the proximal and mid intestine. By 120 hpf, Hoxa9 and Hoxa13 positive cells can be seen along the entire length of the zebrafish intestine. Conclusions These results show further evidence that Hoxa9 and Hoxa13 are involved in the early and organised patterning of ENS development in the zebrafish model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据