4.5 Article

Semi-supervised feature extraction for EEG classification

期刊

PATTERN ANALYSIS AND APPLICATIONS
卷 16, 期 2, 页码 213-222

出版社

SPRINGER
DOI: 10.1007/s10044-012-0298-2

关键词

Semi-supervised learning; Feature extraction EEG classification; Extreme energy ratio; Regularization; Density ratio

向作者/读者索取更多资源

Two semi-supervised feature extraction methods are proposed for electroencephalogram (EEG) classification. They aim to alleviate two important limitations in brain-computer interfaces (BCIs). One is on the requirement of small training sets owing to the need of short calibration sessions. The second is the time-varying property of signals, e.g., EEG signals recorded in the training and test sessions often exhibit different discriminant features. These limitations are common in current practical applications of BCI systems and often degrade the performance of traditional feature extraction algorithms. In this paper, we propose two strategies to obtain semi-supervised feature extractors by improving a previous feature extraction method extreme energy ratio (EER). The two methods are termed semi-supervised temporally smooth EER and semi-supervised importance weighted EER, respectively. The former constructs a regularization term on the preservation of the temporal manifold of test samples and adds this as a constraint to the learning of spatial filters. The latter defines two kinds of weights by exploiting the distribution information of test samples and assigns the weights to training data points and trials to improve the estimation of covariance matrices. Both of these two methods regularize the spatial filters to make them more robust and adaptive to the test sessions. Experimental results on data sets from nine subjects with comparisons to the previous EER demonstrate their better capability for classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据