4.5 Article

CFD modeling of catalyst pellet for oxidative coupling of methane: Heat transfer and reaction

期刊

PARTICUOLOGY
卷 11, 期 5, 页码 506-513

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.partic.2012.08.008

关键词

Catalyst pellet; Oxidative coupling of methane; Modeling; CFD; Kinetics

向作者/读者索取更多资源

This study deals with the phenomena occuring at single-pellet catalyst scale for the oxidative coupling of methane where heat transfer plays an important role. Computational fluid dynamics (CFD) is used for obtaining detailed rate and temperature profiles through the porous catalytic pellet where reaction and diffusion compete. Intra-particle temperature and concentration gradients were taken into account by solving heat transfer coupled with continuity equations in the catalyst pellet. In heat transfer, the energy term due to highly exothermic reaction was considered. Two external programs were successfully implemented into the CFD-code as kinetic and heat of reaction terms. Simulation results showed that reaction was favored at the beginning for the pellet, followed by diffusion predomination. The results of CFD simulation indicate that temperature variation within the catalyst pellet is <2 K due to exothermic oxidation. The results showed further that exothermic oxidation reactions occurred prior to endothermic coupling reaction in the pellet. (C) 2013 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据