4.5 Article

Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms

期刊

PARTICUOLOGY
卷 9, 期 6, 页码 619-625

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.partic.2010.05.018

关键词

Displacement ventilation; Particle dispersion; Numerical simulation; Supply air temperature; Inlet location

资金

  1. National Natural Science Foundation of China [40975093]
  2. Shanghai Educational Development Foundation, P.R. China [03SG30]

向作者/读者索取更多资源

The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room, but could significantly influence the airflow pattern in the lower parts of the room, thus affecting the indoor air quality with contaminant sources located at the lower level, such as particles from working activities in an office. The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume, but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser. Comparison of the results for two different supply temperatures in a DV room shows that, although lower supply temperature means less incoming air volume, since the indoor flow is mainly driven by buoyancy, lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office). However, in the breathing zone it gives higher concentration as compared to higher supply air temperature. To obtain good indoor air quality, low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health. (C) 2011 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据