4.5 Article Proceedings Paper

2D DEM simulation of particle mixing in rotating drum: A parametric study

期刊

PARTICUOLOGY
卷 8, 期 2, 页码 141-149

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.partic.2009.10.003

关键词

Discrete Element Method; Rotating drum; Granule; Mixing; Mill; Segregation

向作者/读者索取更多资源

Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simulations and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D OEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 20 simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be reached by specifying a higher frictional coefficient between the particles and the cylinder wall. In order to explore the influences of physical properties (density, size or friction) on mixing behavior, numerical 20 simulations were carried out systematically, in which one examined specific property being examined was exaggerated while the others were kept the same as that in the control group. The OEM simulations reveal that particle density and size are the dominating factors affecting mixing behaviors, while the effect of frictional coefficient is less significant. However, segregation due to any of the factors can be diminished by specifying a proper particle size distribution (multi-size with lower size ratio). (C) 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据