4.3 Article

Composite Cathodes Containing SWCNT@S Coaxial Nanocables: Facile Synthesis, Surface Modification, and Enhanced Performance for Li-Ion Storage

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppsc.201200082

关键词

single-walled carbon nanotubes; Li-S batteries; nanocomposites; polyethylene glycol; energy storage

资金

  1. Foundation for the National Basic Research Program of China (973 Program) [2011CB932602]

向作者/读者索取更多资源

The arrangement and construction of 1D carbon nanotubes (CNTs) into frameworks with two or more levels of structures is an essential step to demonstrate their intrinsic properties and promising applications for energy storage. Single-walled CNTs (SWCNTs) are considered to have more excellent properties compared with multiwalled CNTs (MWCNTs), however, how to appropriately use SWCNTs as building blocks for nanocomposite electrodes is not well understood. Here, a composite cathode containing SWCNT@S coaxial nanocables for Li-S battery is fabricated by a facile melt-diffusion strategy. Beneficial from its sp2 carbon nanostructure, higher specific surface area, larger aspect ratio, and interconnected electron pathway, the SWCNT@S cathode have reversible capacities of 676, 441 and 311 mAh g1 for the first discharging at 0.5 C, 100th discharging at 1.0 C, and discharging at 10.0 C, respectively. These capacities are much higher than the corresponding capacities of the MWCNT@S cathode. By introducing polyethylene glycol (PEG) as a physical barrier to trap the highly polar polysulfide species, the PEG modified SWCNT@S cathode afforded improved reversible capacities. The cycling stability of the reversible capacities is expected to be further improved. The SWCNTs can serve as scaffolds for Li-S battery with much improved energy storage performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据