4.3 Article

Formation of Sn@C Yolk-Shell Nanospheres and Core-Sheath Nanowires for Highly Reversible Lithium Storage

期刊

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
卷 30, 期 10, 页码 873-880

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppsc.201300138

关键词

carbon; lithium-ion batteries; nanospheres; nanowires; tin

向作者/读者索取更多资源

As one promising anode material with high theoretical capacity, metallic tin has attracted much research interest in the field of lithium-ion batteries. Here, two types of tin/carbon (Sn@C) core-shell nanostructures with inner buffering voids are fabricated from SnO2 hollow nanospheres via a facile chemical vapor deposition (CVD) method. The crystallinity and surface topography of SnO2 hollow nanospheres are found to affect the morphology of resultant Sn@C materials. Sn@C yolk-shell nanospheres and core-sheath nanowires are obtained from the as-prepared SnO2 and high-temperature annealed SnO2 nanospheres, respectively. The unique Sn@C nanostructures can mitigate the agglomeration/pulverization of Sn nanoparticles and electrical disconnection from the current collector caused by the large volume change during the lithium alloying/dealloying process. Both Sn@C yolk-shell and core-sheath nanostructures show stable cycling performance up to 500 cycles with specific capacities of ca. 430 and 520 mA h g(-1), respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据