4.3 Article

Molecular cloning, expression, and immunolocalization of protein disulfide isomerase in excretory-secretory products from Clonorchis sinensis

期刊

PARASITOLOGY RESEARCH
卷 111, 期 3, 页码 983-989

出版社

SPRINGER
DOI: 10.1007/s00436-012-2922-x

关键词

-

资金

  1. National Basic Research Program (973 program) [2010CB530000]
  2. Eleventh Five-year Plan for Science & Technology Research of China [2008ZX1004-011]
  3. National Natural Science Foundation of China [81101270]

向作者/读者索取更多资源

Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum with folding and chaperone activities in different biological systems. Here, PDI of Clonorchis sinensis (CsPDI) was isolated from the cDNA library of adult C. sinensis. The open reading frame contains 1,317 bp encoding 438 amino acids and shares 53 %, 49 %, and 43 % identity with PDI from Bos taurus, Homo sapiens, and Schistosoma mansoni, respectively. Two catalytic thioredoxin motifs CxxC were found in this sequence, which were characteristic domains of thioredoxin superfamily. The CsPDI protein was expressed and purified from Escherichia coli BL21 (DE3). According to western blotting analysis, the recombinant CsPDI could be recognized by anti-CsPDI rat serum, anti-excretory/secretory products rat serum, and serum of rat infected with C. sinensis, respectively. Quantitative real-time polymerase chain reaction showed that transcription level of CsPDI in the metacercaria stage was six and four times higher than that in the adult worm and egg stage, respectively. Immunolocalization analysis showed CsPDI could be detected in the intestine, vitellarium, and intrauterine eggs of adult worm, as well as in the cyst wall and vitellarium of metacercaria. In addition, the strong fluorescence signal was observed both on the wall of bile duct and in the lumen of liver tissue of C. sinensis-infected cat. Those results demonstrated that CsPDI was a component of C. sinensis excretory-secretory products. The present study will enhance our understanding of biological functions of CsPDI and pave the way for further studies on host-parasite interaction during C. sinensis infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据