4.4 Article

Species selection and driven mechanisms jointly generate a large-scale morphological trend in monobathrid crinoids

期刊

PALEOBIOLOGY
卷 36, 期 3, 页码 481-496

出版社

PALEONTOLOGICAL SOC INC
DOI: 10.1666/08018.1

关键词

-

向作者/读者索取更多资源

All evolution attributable to natural selection, at any level, is due to a causal covariance between fitness and phenotype. Over macroevolutionary time scales, species selection is one of many possible mechanisms for generating large-scale morphological trends. For species selection to sort morphology, a correlation between morphology and taxonomic diversification rate must be present. Other trend mechanisms (driven mechanisms, e.g., a bias in the direction of speciation) produce a systematic change in the mean phenotype over time. All mechanisms can co-occur. Here I demonstrate (1) an inverse correlation between diversification rate and calyx complexity that demonstrates the effect of species selection on morphology. Genera with simple calyces tend to increase in diversity, whereas genera with complex calyces have a net decrease in diversity; and (2) the presence of a driven trend mechanism in monobathrid crinoids where descendant genera tend to be simpler than their ancestors. The separate effects of these two classes of trend mechanisms can be combined by using the Price's Theorem, which partitions the contribution to the overall change in calyx complexity over time accurately among selection and driven mechanisms. Price's Theorem provides significant conceptual and methodological clarification of the contribution of multiple and interacting hierarchical mechanisms in generating large-scale trends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据