4.6 Article

Anti-GD(2) with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia

期刊

PAIN
卷 149, 期 1, 页码 135-142

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.pain.2010.01.024

关键词

Anti-GD(2); Pain; C5a complement factor; Membrane attack complex; Neuroblastoma; Neuroblastoma therapy; Complement-dependent cytotoxicity; Antibody-dependent cellular cytotoxicity

资金

  1. Cindy Matters Fund
  2. NIH [NS048563-04]
  3. FDA [D-R-002319]
  4. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS048563] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Monoclonal antibodies against GD(2) ganglioside, such as ch14.18, the human-mouse chimeric antibody, have been shown to be effective for the treatment of neuroblastoma. However, treatment is associated with generalized, relatively opiate-resistant pain. We investigated if a point mutation in ch14.18 antibody (hu14.18K332A) to limit complement-dependent cytotoxicity (CDC) would ameliorate the pain behavior, while preserving antibody-dependent cellular cytotoxicity (ADCC). In vitro, CDC and ADCC were measured using europium-TDA assay. In vivo, allodynia was evaluated by measuring thresholds to von Frey filaments applied to the hindpaws after injection of either ch14.18 or hu14.18K332 into wild type rats or rats with deficient complement factor 6. Other rats were pretreated with complement factor C5a receptor antagonist and tested following ch14.18 injection. The mutation reduces the antibody's ability to activate complement, while maintaining its ADCC capabilities. Injection of hu14.18K322 (1 or 3 mg/kg) produced faster resolving allodynia than that engendered by ch14.18 (1 mg/kg). Injection of ch14.18 (1 mg/kg) into rats with C6 complement deficiency further reduced antibody-induced allodynia, while pre-treatment with complement factor C5a receptor antagonist completely abolished ch14.18-induced allodynia. These findings showed that mutant hu14.18 K322 elicited less allodynia than ch14.18 and that ch14.18-elicited allodynia is due to activation of the complement cascade: in part, to formation of membrane attack complex, but more importantly to release of complement factor C5a. Development of immunotherapeutic agents with decreased complement-dependent lysis while maintaining cellular cytotoxicity may offer treatment options with reduced adverse side effects, thereby allowing dose escalation of therapeutic antibodies. (C) 2010 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据